Математика. Нестандартные методы решения неравенств и их систем » Мир Книг - Библиотека электронных книг
28  мая
Математика. Нестандартные методы решения неравенств и их систем
 (голосов: 0)
Добавил Gunpowder в категорию Учебная литература

Математика. Нестандартные методы решения неравенств и их систем

Математика. Нестандартные методы решения неравенств и их систем - Учебное пособие посвящено современным нестандартным методам решения сложных неравенств и их систем. Существенным отличием данной работы от имеющихся подобных изданий является то, что в ней представлено системное изложение методов и алгоритмов, основанных на концепции равносильности и позволяющих сводить решение целых классов сложных иррациональных неравенств, неравенств с модулем, показательных и логарифмических неравенств с постоянным и переменным основанием, а также комбинированных неравенств и их систем, к решению простых рациональных неравенств обычным методом интервалов. Вместе с тем в работе приведены подробные и обоснованные решения более 110 задач разных типов и разного уровня сложности, для самостоятельного решения представлено более 250 задач с ответами. Уровень сложности и структура задач соответствуют заданиям ЕГЭ серии С последних лет. Пособие предназначено старшеклассникам, слушателям подготовительных курсов для подготовки к ЕГЭ, может быть полезным учителям математики старших классов.

Название: Математика. Нестандартные методы решения неравенств и их систем
Автор: Коропец З. Л., Коропец А. А., Алексеева Т. А.
Издательство: УНПК
Год: 2012
Страниц: 126
Формат: PDF
Размер: 13,1 МБ
Качество: Отличное
Язык: Русский

Содержание:

Введение
Некоторые обозначения
1. Метод замены множителя (МЗМ)
   1.1. Понятие равносильности
   1.2. Принцип монотонности для неравенств
   1.3. Теорема о корне
2. Неравенства, содержащие модули
   2.1. Условия равносильности для МЗМ
   2.2. Примеры с решениями
   2.3. Примеры для самостоятельного решения
   Ответы
3. Иррациональные неравенства
   3.1. Условия равносильности для МЗМ
   3.2. Примеры с решениями
   3.3. Примеры для самостоятельного решения
   Ответы
4. Показательные неравенства
   4.1. Условия равносильности для МЗМ
   4.2. Примеры с решениями
   4.3. Примеры для самостоятельного решения
   Ответы
5. Логарифмические неравенства
   5.1. Условия равносильности для МЗМ
   5.2. Примеры с решениями
   5.3. Примеры для самостоятельного решения
   Ответы
6. Показательные неравенства с переменным основанием
   6.1. Условия равносильности для МЗМ
   6.2. Примеры с решениями
   6.3. Примеры для самостоятельного решения
   Ответы
7. Логарифмические неравенства с переменным основанием
   7.1. Условия равносильности для МЗМ
   7.2. Примеры с решениями
   7.3. Примеры для самостоятельного решения
   Ответы
8. Использование свойств функций при решении неравенств
   8.1. Использование области определения функций
   8.2. Использование ограниченности функций
      8.2.1. Использование неотрицательности функций
      8.2.2. Метод мини-максов (метод оценки)
   8.3. Использование монотонности функций
   8.4. Примеры для самостоятельного решения
   Ответы
9. Системы неравенств
   9.1. Примеры с решениями
   9.2. Примеры для самостоятельного решения
   Ответы
Литература

Загрузить Математика. Нестандартные методы решения неравенств и их систем


Купить эту книгу в бумажном исполнении с доставкой



Комментарии (0) Просмотры: 293

Расскажи о книге друзьям :




Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.